BRFSS Caregiving Module Questions asked from 2015-2020 https://www.cdc.gov/aging/healthybrain/brfss-faq-caregiver.htm.

brfss_cg

Format

A "long" data frame with XX rows of individual BRFSS respondents in a given state and year and YY column variables:

cg_d_num

indicator, numeric variable of whether respondent was Caregiver (cg_d_num=1) or not (cg_d_num=0)

cg_d_fct

indicator, factor variable of whether respondent was Caregiver (cg_d_fct="CG") or not (cg_d_fct="Non-CG")

state

state FIPS code, labeled with state alphabetic abbreviation

seqno

identificaiton variable

year

Numeric year, 2014-2020

sgm_wt_raw

Original, raw sampling weight: 2014-2020

Source

BRFSS Annual Survey Data https://www.cdc.gov/brfss/annual_data/annual_data.htm.

Examples

# To adjust the sampling weight (cg_wt_adj) by dividing the # sampling weight (cg_wt_raw) by the number of instances # a state is in the data, run: library(tidyverse)
#> ── Attaching packages ──────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
#> ggplot2 3.3.2 purrr 0.3.4 #> tibble 3.0.3 dplyr 1.0.2 #> tidyr 1.1.2 stringr 1.4.0 #> readr 1.4.0 forcats 0.5.0
#> ── Conflicts ─────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ── #> x dplyr::filter() masks stats::filter() #> x dplyr::lag() masks stats::lag()
data(brfss_cg) waves<-brfss_cg %>% filter(year %in% 2016:2018) %>% #keeping only 2016-2018 for illustration group_by(year,state) %>% slice(1) %>% #keeping the first observation of each state + year ungroup() %>% group_by(state) %>% #grouping by state count() %>% #counting how many years the state was included rename(wave=n) #renaming as wave brfss_cg<-full_join(brfss_cg,waves,by="state") %>% mutate(cg_wt_adj = cg_wt_raw/wave) #adjusting the weight by number of waves